
IJSER

Handwriting recognition & Auto Completion

Abhilekkh Krishna1 and Abhigyan Krishna2

1 krishnabhilekkh@gmail.com
2 abhigyan01krishna@gmail.com

Abstract. In the digital age, handwriting remains crucial for express-
ing illustrations and formulas despite the prevalence of keyboard input.
However, the diverse nature of handwriting poses challenges for computer
processing, limiting its portability and input assistance. To address these
issues, Handwriting Recognition technology has been developed, gaining
traction with electronic pens and tablets. This report explores the ap-
plication of Handwriting Recognition on iOS devices, emphasizing the
growing need for improved recognition capabilities. The report recognizes
the evolving landscape and proposes auto-completion to enhance hand-
writing input convenience. The study demonstrates that auto-completion
can reduce the number of characters required for a word entry, mitigat-
ing input challenges. Additionally, a technique is proposed to minimize
computational demands on devices. Two metrics are introduced to eval-
uate auto-completion performance, comparing outcomes between utiliz-
ing iOS’s text recognition API and a custom Handwriting Recognition
model designed for computational efficiency. This research aims to unlock
the full potential of electronic tablets as a medium for handwriting, ad-
dressing current limitations and fostering advancements in Handwriting
Recognition applications.

1 Introduction

Handwriting has played a significant role as a means of human knowledge preser-
vation or communication from the invention of letters to modern times. Its role
has been reduced with the spread of printing and computers, but in many parts
of our lives, I still have the opportunity to write and read handwriting. For Ex-
ample, Students in a classroom still prefer to use paper and pen or electronic
tablet to store knowledge, mathematical formulas, graphs, etc., rather than tak-
ing notes using a keyboard and computer. On the other hand, in computer work
such as searching or document writing, input is almost always performed with
a keyboard, and information written by hand is rare. This is, of course, because
the computer cannot handle handwritten input as text as it is, but also because
the keyboard is more efficient for inputting characters. With a keyboard, I can
enter characters with less movement than handwriting. Besides, there are also
assisting functions for keyboard input, such as copying and pasting, searching, or
formatting. Since keyboard input has these advantages, people usually try to use
a keyboard even for easier tasks and a tablet device for tasks that are not achiev-
able with the keyboard. However, this situation shows signs of change with the



IJSER

2 A.B. Krishna

spread of tablet devices in recent years. On these devices, input work that key-
boards are not good at, such as drawing illustrations and writing mathematical
formulas, can be more accessible. In addition, applications 34 have appeared to
handle handwriting as text format by applying Handwriting Recognition tech-
nology that has been studied for many years. Thanks to these technological
improvements, writing is becoming an available option for inputting text, but
it is not yet as efficient as a keyboard. One of the reasons for this is the lack
of input assistance. Therefore, in this work, I propose an application that com-
bines Handwriting Recognition and auto-completion to assist handwriting and
to enable it to be treated as text format on devices.

Our application consists of two elements: Handwriting Recognition and auto-
completion. Handwriting Recognition (HWR) is a technology that interprets
handwritten inputs from sources such as papers, photographs, electronic tablets,
and other devices into a format computers can easily handle that. In most of
the modern work of HWR, the process pipeline is divided into Handwritten
Text Detection and Handwritten Text Recognition [11]. The processing of text
detection tends to be complicated[11], and it takes considerable time to perform
processing on the entire input image. It is known 5 that longer processing time in
applications that require a quick response, such as auto-completion, can seriously
degrade the user experience. Therefore, I propose a method to avoid performing
Text Detection using a simple heuristic: Region of Interest (ROI) detection.

Auto-completion is a program that predicts the rest of the word a user is
typing based on the letters entered or the recent word pairs [2]. It is widely used
in web browsers, email programs, source code editors, and word processors. If
the correct word is included in the predicted words list, the user can save time
to enter the rest of the word. In this work, to make the process simple, I used a
forward forward-matching algorithm for this purpose.

The following section introduces typical approaches of HWR and related
works. Section 3 provides technical details of the process the problem addressed
in this report. Section 4 describes the result result process and discusses that.
Section 5

2 Related Work

2.1 Handwriting Recognition Taxonomy

HWR can be roughly divided into two approaches: online approach and offline
approach [14]. While the online approach uses information on the trajectory of
the pen tip obtained from a special pen for classification, the offline method
uses optically scanned images as input and performs recognition using computer
vision techniques. In this work, for simplicity of the pipeline, I focus only on the
offline approach.

3 https://www.nebo.app/
4 http://mazec.jp/
5 http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html



IJSER

Handwriting recognition & Auto Completion 3

The offline approach of HWR can be positioned as one variant of Scene
Text Detection / Recognition, which is a technology to extract and recognize
text information written in natural images. Due to the recent development of
Neural Networks technology, much research has been done in this field to this
day. Except for few methods[10][12], most approaches of Scene Text Detection /
Recognition separate text detection and text recognition and perform stepwise
inference.

2.2 Detection

Scene Text Detection can be subsumed under general object detection; those
methods usually follow the same object detection procedure is dichotomized
as one-stage methods and two-stage ones [8]. After the emergence of FasterR-
CNN[17], most of the modern text detection algorithms are based on FasterR-
CNN, YOLO[16], SSD[9].

In addition to the general object detection model, text detection models are
devised to detect tilted bounding boxes[19][7] and character regions of arbitrary
shapes[18], or to simplify the pipeline[6], since pipeline of text detection tends
to be complicated[8].

2.3 Recognition

Some text recognition algorithms divide the task into character segmentation and
character recognition [1][13]. Character segmentation is considered the most chal-
lenging part of scene text recognition and may affect overall accuracy. It is tough
to segment connected characters such as cursive. Therefore, some techniques that
do not rely on character segmentation have been developed. This report intro-
duces a method called Connectionist Temporal Classification (CTC) [5].

CTC was first proposed to handle sequence labeling of arbitrary length, re-
quiring no pre-segmented training data. A CTC network outputs probabilities
for each label at each time step. The time step length can be any length longer
than the label length. The output at each time step is the probability of the
classes to be recognized plus the extra class representing ”blank.” Let this out-
put probability be y = (y1, y2, · · · , yw) and denote by ytk the activation of label
k at time step t. Given this probability distribution, the conditional probability
of the sequence is calculated as follows.

p(π|y) =
w∏

t=1

ytπt
(1)

Then a many-to-one mapping B is defined to transform the sequence π to
a shorter sequence. This mapping obtains the final predicted label. This map-
ping removes all blanks and repeated continuous labels from the sequence. For
Example, B maps the predicted sequence ”aa-p-pl—-ee” to ”apple,” where ”-”
represents the ”blank.” Since this mapping is a many-to-one, different sequences
may be mapped to the same sequence. Therefore, the probability of the final



IJSER

4 A.B. Krishna

output sequence is the sum of all possible conditional probabilities of all π cor-
responding to that final sequence.

p(l|y) =
∑
π

p(π|y) (2)

where π represents all π which produces l = B(π).
The classifier’s output should be the most probable labeling for the input

sequence.

h(y) = argmax p(l|y) (3)

In general, there are many mapping paths for a given sequence. Thus calcu-
lation of argmax requires heavy computation. In practice ng two approximate
methods are known to give us a good result.

The first method is based on the assumption that the most probable path
can be approximated by the sequence of most probable labeling

h(y) ≈ B(π∗) (4)

Wherefore π∗ is a set of labethatich get the highest probabilities at each time
step. Although it works well, it is not guaranteed to get the most probable
labeling.

The second method uses a forward-backward algorithm to efficiently search
for the most probable sequence. With enough time, this approach can always
find the most probable labeling from the input sequence, but the amount of
computation increases exponentially concerning the sequence length, so it is not
practical to find the exact solution.

The maximum likelihood approach is utilized to train the network with the
dataset D = {Ii, li}, where Ii represents the input image and li represents the
corresponding label. The objective function of this can be negative log-likelihood

O = −
∑

(Ii,li)∈D

log p(li|yi) (5)

where yi = f(Ii) and f(·) represents the classifier. Stochastic Gradient De-
scent (SGD) can be used to minimize negative log-likelihood. To summarize, a
text recognition model with CTC can be obtained by defining a network that
outputs a sequence longer than the required label length and training the net-
work to minimize the loss function (??). After the fitting, the model outputs
a sequence of probabilities of labels for a given input. Each time step of the
sequence corresponds to, if the input is an image, image patches arranged in
the direction of writing. I then get the final prediction by putting the output
sequence into a many-to-one mapping. There are several options for this many-
to-one mapping. Still, the one to get the highest probabilities at each time step
and the one that uses a forward-backward algorithm is considered to achieve
good performance in practice.



IJSER

Handwriting recognition & Auto Completion 5

3 Methods

As in the case of Scene Text Detection / Recognition, it is adequate to separate
Text Detection and Text Recognition and treat them as different problems. Fur-
thermore, it is possible to record the written area due to the characteristics of
the electronic tablet, so using a simple heuristic on the trajectory data eliminates
the need to perform text detection. The role of this step, namely the ”Region of
Interest Detection” step, is to reduce the size of data passed to the subsequent
processing and suppressed the increase in the amount of calculation. Detected
regions are then preprocessed and passed to the text recognition module. In the
current implementation, illustrations and handwritten characters cannot be sep-
arated, so the processing is passed to the handwriting recognition module even if
the user writes pictures. Still, improvements in this part are discussed in Section
??. In the text recognition module, two patterns of recognition using CTC and
credit using the API provided by Apple were verified.

3.1 Region of Interest Detection

The purpose of Region of Interest (ROI) detection is to cut out sub-sequence
representing words and illustrations from the dot sequence of the pen tip trajec-
tory and cut back the data to be passed to the subsequent processing to reduce
the amount of calculation and improve the recognition accuracy. A region of
interest includes a dot sequence of the word or the illustration. To specify the
region, two assumptions are made: region of interest.

1. Objects drawn in the ROI are close in time when drawn
2. Objects drawn in the ROI are spatially close

Based on these assumptions s, the sequence contained in ROI is detected by
the following algorithm 1. T, hen the smallest rectangle containing the obtained
point sequence is the ROI. It should be noted that I prioritize the reduction of
the amount of computation and terminate the search for subsequences on the
way. As a result, points that are not continuous in time but close in space may
not be included in the ROI, depending on the threshold setting. However, when
priority is given to spatial proximity, it is necessary to parse the entire trajectory
every time I perform ROI detection. If the size of the point sequence becomes
large, it may be a bottleneck in the calculation. Therefore, I decided to use this
methwhicht it should be improve in future work.

Figure 1 shows an example of the region detected with this heuristic.
There are some cases where such heuristics do not work. For Example, when

the scale of the depicted object is large, the gap between the sequence of points
constituting the things may be too large and fail.It is also a significant prob-
lem that temporal and spatial proximity depends on parameters and sometimes
does not match intuition. However, this method can certainlyn narrow down the
target area for text recognition with a minimal amount of computation, so this
report adopted this method.



IJSER

6 A.B. Krishna

Algorithm 1: ROI detection

Input: S = {s1, s2, · · · , sn} where si = (ci, ti)
Output: σ = {sk, sk + 1, · · · , sn} 1 ≤ k ≤ n

1 σ := {sn}
2 cprev := cn
3 tprev := tn
4 for si in reversed(S) \ sn do
5 ci, ti ← si
6 if tprev − ti < tthreshold then
7 σ ← σ ∪ {si}
8 else
9 if distance(cprev, ci) < cthreshold then

10 σ ← σ ∪ {si}
11 else
12 break

13 cprev ← ci
14 tprev ← ti

Fig. 1. The region with yellow overlay is detected region of interest



IJSER

Handwriting recognition & Auto Completion 7

3.2 Recognition

In text recognition, two models were tried: a model that directly reads the con-
tent from the result of region of interest detection using CT, and the model
which is provided by Apple6. Note that Apple’s VNRecognizeTextRequest API
does not disclose its implementation or the model used insidt is unknown exactly
what processing is being done.

CTC CTC models are usually constructed usthe ing CNN model with Recurrent
Neural Network (RNN) as the output layer. However, RNN performs computa-
tions slowly compared to CNN, and in recent y,ears its effectiveness in CTC
is sometimes questioned [15]. Given that all calculations are done on iOS, and
based on research that the output layer of the CTC model can also be config-
ured using CNN [4], in this re,port a mothat is fully constructed only by CNN
was used the for CTC model. = To get an approximation the for most probable
labeling, greedy policy, the policy to take the most probable label at each time
tep, was used.

VNRecognizeText API VNRecognizeText API is an API provided by Apple
officially, and its function is to detect text from the whole area where the drawing
is and read it. Therefore,e there’s no need to detect the region of interest to read
the content inside. However, I used ROI detection to preprocess the inference
fast before putting an image into the API to make the inference fast. This API
is entirely a black box accepts an image of any shape as input, reads the text it
and outputs it with position information.

VNRecognizeText API has two modes for recognition, namely ‘.fast‘ and
‘.accurate‘7. According to the official introduction video8 if VNRecognizeText
API, ‘.fast‘ ua ses traditional feature-based method inside while ‘.accurate‘ ua
ses more sophisticated Computer Vision model inside. As the names of those
imply ‘.fast‘ is faster but not so accurate, rate while ‘.accurate‘ is slower but more
accurate. Both ‘.fast‘ and ‘.accurate‘ were tested. However, since ‘.fast‘ failed to
recognize handwritten letters, measurement on ‘.fast‘ was not conducted.

3.3 Auto-Complete

In this report, I deal with auto-completion as an application of the inference
result. This auto-completion emphasizes simplicity and presents words that start
withinferredddevelopmentt in order of frequency. To get the word candidates who
start withinferredddevelopmentt, I created an inverse index that maps the first
few letters of words to a group of words with that prefix. For Example, index
”elbo” corresponds to word group {”elbo,”, ”elbow’,”, ”elbowe,,” ”elbowin,”,
”elbowroo,”, ”elbowroom,’”, ”elbows”}. Word suggestions for auto-completion

6 https://developer.apple.com/documentation/vision/vnrecognizetextrequest
7 https://developer.apple.com/documentation/vision/vnrequesttextrecognitionlevel
8 https://developer.apple.com/videos/play/wwdc2019/234/



IJSER

8 A.B. Krishna

are fthe rom ‘wamerican‘ package9 of Debian GNU/Linux. Word frequencies
were counted using wikipedia-word-frequency10. I implemented auto-completed
each time the pen is released from the tablet surface.

3.4 Dataset

Handwritten character recognition and handwritten sentence recognition are
fields that have been studied for a long time, so there are many data sets111213[3],
but these are often provided in different formats, and there is some difficulty in
eliminating differences between formats and using them for the training dataset.
Therefore, I took an approach to create a composite dataset by embedding a
combination of existing handwritten-like fonts with randomly picked font sizes
and selected English words in the image. The words are selected from the ‘Amer-
ican‘ package and 10,000 images were generated for training. I split the dataset
to 80% / 20% each for training/validation. Figure 2 shows an example of training
data generated with this method.

Fig. 2. Generated image using handwritten-like fonts

I only used vertical and horizontal random offset of characters in a word for
image preprocessing. Since the image taken from the prototype application has
white background with no blurriness, I didn’t apply further image augmentation
techniques.

9 https://packages.debian.org/search?keywords=wamerican
10 https://github.com/IlyaSemenov/wikipedia-word-frequency
11 https://www.kaggle.com/vaibhao/handwritten-characters
12 https://www.kaggle.com/ashishguptajiit/handwritten-az
13 https://www.kaggle.com/sachinpatel21/az-handwritten-alphabets-in-csv-format



IJSER

Handwriting recognition & Auto Completion 9

3.5 Implementation

I used Python3.614 and TensorFlow2.115 for building machine learning models
and training, and used coremltools3.216 to convert the models into a format
that can work on iOS.For training, Adam optimizer with learning rate 5e-5.
‘beta 1‘ and ‘beta 2‘ parameters are set to 0.9 and 0.999 each. The training was
performed in 50 epochs with batch size 32. Due to the limitations of core tools,
I fixed the image size to 32x200 and padded the image.

To get handwritten document images from the iOS electronic tablet, a func-
tion to print the input from the Apple Pencil17 on the white canvas according
to the path of the pen has been implemented.

For training the model, Google Colaboratory environment 18 has been used.

4 Results & Discussion

4.1 Region of Interest Detection

ROI detection should cut out the region the user focuses on. For Example, when
a user writes a sentence, ROI should be a word written, and when a user is
drawing an illustration, ROI should be the whole illustration drawn.

Since it is difficult to measure the goodness of the ROI detection quantita-
tively, only qualitative evaluation was performed this time. When cutting out
only the words that the user is writing in the text, ROI detection worked almost
without failure (Fig 3).

Fig. 3. ROI detection works well when cutting out a word that is being written

On the other hand, when cutting out a handwritten illustration, only a part
of the illustration may be cut out if the lines constituting the illustrations are
not spatially close to each other (Fig 4). Note that the failure example may seem
spatially close inside, but it is not the case when I split it up into a set of strokes
and compare the distance between starting point and ending point of strokes.

14 https://www.python.org/downloads/release/python-360/
15 https://www.tensorflow.org/
16 https://apple.github.io/coremltools/
17 https://www.apple.com/apple-pencil/
18 https://colab.research.google.com/notebooks/welcome.ipynb



IJSER

10 A.B. Krishna

Fig. 4. Left: Example of the case ROI detection worked well on illustration. Right:
Example of failure case of ROI detection

4.2 Evaluation of Text recognition

In the previous section, two patterns of text recognition were tried: recogni-
tion using CTC and recognition using VNRecognizeText API. Since this report
worked on the recognition of handwritten text and made use of the result for
auto-complete, the following metrics were designed to measure the goodness of
auto-completion.

– Omitted Characters Count (OCC) - The gap between how many characters
did the writer actually wrote before he found the word he wanted to write
within top 10 of the auto-completion candidates and the number of charac-
ters in the word. If it is not found after writing to the end, the score is 0. A
higher value of this metric indicates better results.

– Cumulative Time for Inference (CTI) - Cumulative time spent on auto-
completion until the word that the writer actually wants to write is included
in the top 10 auto-completion candidates. It should be noted that CTI is not
proportional to the actual inference time at each time step because the earlier
the word is included in the list, the shorter CTI is. If it is not found after
writing to the end, the score is cumulative time spent on the recognition
at each step. Note that the recognition process runs each time the writer
releases the pen tip from the tablet. The lower value of this metric indicates
a better result.

100 words were randomly selected from the word list of ‘wamerican‘ package
of Debian GNU/Linux for evaluation. Table 1 shows the performance of both
methods on auto-completion. While OCC measures of VNRecognizeText API
shows a better result than CTC; the cumulative time elapsed for inference is
almost double that of CTC.

Figure 5 shows an example of how auto-completion works.

4.3 Discussion

The VNRecognizeText API is superior to CTC in character recognition accuracy,
but in terms of speed, it takes about three times longer to infer for each time step.
Since auto-completion is an application that requires real-time performance, a



IJSER

Handwriting recognition & Auto Completion 11

Table 1.

method OCC (mean) CTI (mean)

CTC 1.0102 1.1060

VNRecognizeText (.accurate) 3.3405 1.9751

Perfromance of CTC and VNRecognizeText API on auto-completion

Fig. 5. Example of auto-completion showing the top 1 candidate

small lag does not provide a good user experience. Therefore, poor performance
in speed can be a problem.

On the other hand, the CTC model shows inference speed that does not make
the user feel uncomfortable in actual use, but the inference result is unstable,
and a slight difference in notation greatly affects the inference result. Figure 6
shows an example of unstable inference. Considering the fact that the average
length of the experimented words is 7.96, the performance of VNRecognizeText
is promising since more than 40% of the word length can be potentially omitted
by auto-completion.

Fig. 6. Example of unstable inference

This is probably because training of the CTC model seems to be overfitting
and strongly depends on the dataset used for training. Therefore, future tasks
include reducing the reliance on datasets and using larger datasets or using data
augmentation techniques to improve generalization performance.

5 Future Work & Conclusion

The goal of this report is to create an application to recognize sentences on iOS
and assist handwriting so that handwriting can be on par with keyboard input.
Although it is imperfect, the heuristic used for ROI detection successfully detect



IJSER

12 A.B. Krishna

a word out of a sentence, and can cut handwritten illustration out from the other
part of document without requiring large amount of computation. Since current
ROI detection algorithm does not parse all the trajectory and instead searches for
the subsequence included in ROI from the end of the sequence iteratively for the
sake of speed, it is sometimes the case that strokes that should be included in ROI
intuitively are not included. Future tasks include improving this point. It should
also be noted that current implementation cannot separate handwriting from
handwritten illustrations, therefore text recognition process is always performed
even if the user is drawing an illustration. To prevent this, I need to implement
another process to check whether the output of ROI detection is an illustration
or text. Putting that process into the pipeline is also a future work.

On the other hand, text recognition had a trade-off between speed and ac-
curacy. Future tasks include improving the accuracy of text recognition without
slowing it down. Since this work does not elaborate on collecting datasets or
hyperparameters search, the starting point for improving the accuracy can be
either.

Another example of future work is to perform more accurate text recognition
and ROI detection using an online method.In auto-completion, prediction using
information on surrounding words, and refinement of the technique of presenting
complement candidates can also be one of future works.

References

1. Bissacco, A., Cummins, M., Netzer, Y., Neven, H.: Photoocr: Reading text in
uncontrolled conditions. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 785–792 (2013)

2. Darragh, J.J., Witten, I.H., James, M.L.: The reactive keyboard: A predictive
typing aid. Computer 23(11), 41–49 (1990)

3. Dua, D., Graff, C.: UCI machine learning repository (2017),
http://archive.ics.uci.edu/ml

4. Gao, Y., Chen, Y., Wang, J., Lu, H.: Reading scene text with attention convolu-
tional sequence modeling. arXiv preprint arXiv:1709.04303 (2017)

5. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd international conference on Machine learning. pp. 369–
376. ACM (2006)

6. He, P., Huang, W., He, T., Zhu, Q., Qiao, Y., Li, X.: Single shot text detector
with regional attention. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 3047–3055 (2017)

7. Jiang, Y., Zhu, X., Wang, X., Yang, S., Li, W., Wang, H., Fu, P., Luo, Z.: R2cnn:
rotational region cnn for orientation robust scene text detection. arXiv preprint
arXiv:1706.09579 (2017)

8. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen,
M.: Deep learning for generic object detection: A survey. arXiv preprint
arXiv:1809.02165 (2018)

9. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
Ssd: Single shot multibox detector. In: European conference on computer vision.
pp. 21–37. Springer (2016)



IJSER

Handwriting recognition & Auto Completion 13

10. Liu, X., Liang, D., Yan, S., Chen, D., Qiao, Y., Yan, J.: Fots: Fast oriented text
spotting with a unified network. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. pp. 5676–5685 (2018)

11. Long, S., He, X., Yao, C.: Scene text detection and recognition: The deep learning
era (2018)

12. Lyu, P., Liao, M., Yao, C., Wu, W., Bai, X.: Mask textspotter: An end-to-end
trainable neural network for spotting text with arbitrary shapes. In: Proceedings
of the European Conference on Computer Vision (ECCV). pp. 67–83 (2018)

13. Phan, T.Q., Shivakumara, P., Su, B., Tan, C.L.: A gradient vector flow-based
method for video character segmentation. In: 2011 International Conference on
Document Analysis and Recognition. pp. 1024–1028. IEEE (2011)

14. Plamondon, R., Srihari, S.N.: Online and off-line handwriting recognition: a com-
prehensive survey. IEEE Transactions on pattern analysis and machine intelligence
22(1), 63–84 (2000)

15. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwrit-
ten text recognition? In: 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR). vol. 1, pp. 67–72. IEEE (2017)

16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 779–788 (2016)

17. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks (2015)

18. Zhang, C., Liang, B., Huang, Z., En, M., Han, J., Ding, E., Ding, X.: Look more
than once: An accurate detector for text of arbitrary shapes (2019)

19. Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., Liang, J.: East: an
efficient and accurate scene text detector. In: Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition. pp. 5551–5560 (2017)


